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Introduction 

In this note, we first describe the simplest of the response model types: 

aggregate response to a single marketing instrument in a static, noncompetitive 

environment. Then we introduce additional marketing instruments, dynamics, 

and competition into the aggregate response model.   The interested reader is 

referred to Lilien, Kotler and Moorthy (1992) and Leeflang et al (2000) for 

additional details. 

Before we proceed, we need to be clear on the vocabulary: 

We use several terms to denote the equation or sets of equations that relate 
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dependent variables to independent variables in a model, such as relationship, 

specification, and mathematical form. 

Parameters are the constants (usually the a’s and b’s) in the mathematical 

representation of models. To make a model form apply to a specific situation, we 

must estimate or guess what these values are; in this way we infuse life into the 

abstract model. Parameters often have direct marketing interpretations (e.g., 

market potential or price elasticity). 

Calibration is the process of determining appropriate values of the 

parameters. You might use statistical methods (i.e., estimation), some sort of 

judgmental process, or a combination of approaches. 

For example, a simple model is 

,bXaY +=         (1) 

In Eq. (1), X is an independent variable (advertising, say), Y is a dependent 

variable (sales), the model form is linear, and a and b are parameters. Note that 

a in Eq. (1) is the level of sales (Y) when X equals 0 (zero advertising), or the 

base sales level. For every dollar increase in advertising, Eq. (1) says that we 

should expect to see a change in sales of b units. Here b is the slope of the 

sales/advertising response model. When we determine that the right value of a 

and b (e.g., via judgmental calibration, or via statistical estimation) are 23,000 

and 4, respectively, and place those values in Eq. (1) to get 

,4000,23 XY +=        (2) 

then we say we have calibrated the model (given values to its parameters) 

(Exhibit 1). 

Some Simple Market Response Models 

In this section, we will provide a foundation of simple but widely used models 

of market response that relate one dependent variable to one independent 

variable in the absence of competition. The linear model shown in Exhibit 1 is 

used frequently, but it is far from consistent with the ways markets appear to 

behave. 
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EXHIBIT 1 

Interpreting the coefficients of a linear response model.  

Saunders (1987) summarizes several phenomena that have been reported in 

marketing studies and that we should be able to handle using our toolkit of 

models (Exhibit 2). In describing these eight phenomena here, we use the term 

input to refer to the level of marketing effort (the X or independent variable) and 

output to refer to the result (the Y or dependent variable): 

 P1. Output is zero when input is zero. 

 P2. The relationship between input and output is linear. 

 P3. Returns decrease as the scale of input increases (every additional unit of 

input gives less output than the previous unit gave). 

 P4. Output cannot exceed some level (saturation). 

 P5. Returns increase as scale of input increases (every additional unit of 

input gives more output than the previous unit). 

 P6. Returns first increase and then decrease as input increases (S-shaped 

return). 

 P7. Input must exceed some level before it produces any output (threshold). 

 P8. Beyond some level of input, output declines (supersaturation point). 
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EXHIBIT 2 

Pictorial representation of Saunders’ response model phenomena.  
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The phenomena we wish to incorporate in our model of the marketplace 

depend on many things, including what we have observed about the market 

(data), what we know about the market (judgment or experience), and existing 

theory about how markets react. We now outline some of the common model 

forms that incorporate these phenomena. 

The linear model: The simplest and most widely used model is the linear 

model: 

,bXaY +=         (3) 

The linear model has several appealing characteristics: 

• Given market data, one can use standard regression methods to estimate 

the parameters. 

• The model is easy to visualize and understand. 

• Within specific ranges of inputs, the model can approximate many more 

complicated functions quite well—a straight line can come fairly close to 

approximating most curves in a limited region. 

It has the following problems: 

• It assumes constant returns to scale everywhere, i.e., it cannot 

accommodate P3, P5, or P6. 

• It has no upper bound on Y. 

• It often gives managers unreasonable guidance on decisions. 

On this last point, note that the sales slope (�Y/�X) is constant everywhere 

and equal to b. Thus if the contribution margin (assumed to be constant, for the 

moment) is m for the product, then the marginal profit from an additional unit of 

spending is bm. If bm>1, more should be spent on that marketing activity, 

without limit—that is, every dollar spent immediately generates more than a 

dollar in profit! If bm<1, nothing should be spent. Clearly this model is of limited 

use for global decision making (It says: spend limitless amounts or nothing at 

all!), but locally the model suggests whether a spending increase or decrease is 

appropriate. 

Linear models have seen wide use in marketing, and they readily handle 

phenomena P1 and P2. If X is constrained to lie within a range BXB ≤≤ , the 

model can accommodate P4 and P7 as well. 
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The power series model: If we are uncertain what the relationship is 

between X and Y, we can use a power series model. Here the response model is 

...32 ++++= dXcXbXaY       (4) 

which can take many shapes. 

The power series model may fit well within the range of the data but will 

normally behave badly (becoming unbounded) outside the data range. By 

selecting parameter values appropriately the model may be designed to handle 

phenomena P1, P2, P3, P5, P6, and P8. 

The fractional root model: The fractional root model, 

cbXaY += (with c prespecified)     (5) 

has a simple but flexible form. There are combinations of parameters that 
give increasing, decreasing, and (with c=1) constant returns to scale. 
When c=1/2 the model is called the square root model. When c=–1 it is 
called the reciprocal model; here Y approaches the value a when X gets 
large. If a=0, the parameter c has the economic interpretation of elasticity 
(the percent change in sales, Y, when there is a 1 percent change in 
marketing effort X). When X is price, c is normally negative, whereas it is 
positive for most other marketing variables. This model handles P1, P2, 
P3, P4, and P5, depending on what parameter values you select. 

The semilog model: With the functional form 

,ln XbaY +=        (6)  

the semilog model handles situations in which constant percentage increases in 

marketing effort result in constant absolute increases in sales. It handles P3 and 

P7 and can be used to represent a response to advertising spending where after 

some threshold of awareness, additional spending may have diminishing returns. 

The exponential model: The exponential model, 

0,Xwhere >= bXaeY       (7) 

characterizes situations where there are increasing returns to scale (for b>0); 

however, it is most widely used as a price-response function for b<0 (i.e., 

increasing returns to decreases in price) when Y approaches 0 as X becomes 



 7

large. It handles phenomena P5 and, if b is negative, P4 (Y approaches 0, a lower 

bound here). 

The modified exponential model: The modified exponential model has the 

following form: 

,)1( ceaY bX +−= −        (8) 

It has an upper bound or saturation level at a+c and a lower bound of c, and it 

shows decreasing returns to scale. The model handles phenomena P3 and P4 and 

is used as a response function to selling effort; it can accommodate P1 when c=0. 

The logistic model: Of the S-shaped models used in marketing, the logistic 

model is perhaps the most common. It has the form 

,
1 )( d

e
aY cXb +

+
= +−        (9) 

This model has a saturation level at a+d and has a region of increasing returns 

followed by decreasing return to scale; it is symmetrical around d+a/2. It handles 

phenomena P4 and P6, is easy to estimate, and is widely used. 

The Gompertz model: A less widely used S-shaped function is the following 

Gompertz model: 

,1,01,0, <>>>+= cbadabY cX      (10) 

Both the Gompertz and logistic curves lie between a lower bound and an upper 

bound; the Gompertz curve involves a constant ratio of successive first 

differences of log Y, whereas the logistic curve involves a constant ratio of 

successive first differences of 1/Y. This model handles phenomena P1, P4, and P6. 

(The better known logistic function is used more often than the Gompertz 

because it is easy to estimate.) 

The ADBUDG Model: The ADBUDG model, popularized by Little (1970), has the 

form 

,)( c

c

Xd
XbabY
+

−+=       (11) 

The model is S-shaped for c>1 and concave for 0<c<1. It is bounded between b 

(lower bound) and a (upper bound). The model handles phenomena P1, P3, P4, 

and P6, and it is used widely to model response to advertising and selling effort. 
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Even readers with good mathematical backgrounds may not be able to 

appreciate the uses, limitations, and flexibility of these model forms.  One way to 

visualize these models would be insert various values of x in Excel, compute the y 

value corresponding to each x using the formula for the response model, and plot 

the resulting set of values of y.  

Response Model Calibration 

Calibration means assigning good values to the parameters of the model. 

Consider the simple linear model (Eq. 3). If we want to use that model, we have 

to assign values to a and b. We would want those values to be good ones. But 

what do we mean by good? A vast statistical and econometric literature addresses 

this question, but we will try to address it simply and intuitively: 

Calibration goal: We want estimates of a and b that make the relationship 

Y=a+bX a good approximation of how Y varies with values of X, which we know 

something about from data or intuition. 

People often use least squares regression to calibrate a model. In effect, if 

we have a number of observations of X (call them x1, x2, etc.) and associated 

observations of Y (called y1, y2, etc.), regression estimates of a and b are those 

values that minimize the sum of the squared differences between each of the 

observed Y values and the associated “estimate” provided by the model. For 

example, a+bx7 would be our estimate of y7, and we would want y7 and a+bx7 to 

be close to each another. We may have actual data about these pairs of X’s and 

Y’s or we may use our best judgment to generate them (“What level of sales 

would we get if our advertising were 10 times what it is now? What if it were 

half of what it is now?”). 

When the data that we use for calibration are actual experimental or market 

data, we call the calibration task “objective calibration” (or objective parameter 

estimation). When the data are subjective judgments, we call the task “subjective 

calibration.” 

In either case we need an idea of how well the model represents the data. One 

frequently used index is R2, or R-square. If each of the estimated values of Y 

equals the actual value of Y, then R-square has a maximum value of 1; if the 

estimates of Y do only as well as the average of the Y values, then R-square has a 

value of 0. If R-square is less than 0, then we are doing worse than we would by 

simply assigning the average value of Y to every value of X. In that case we have a 
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very poor model indeed!  

 

Formally R-square is defined as  

 

Y) of  valueaverage  theand sY' actualbetween  sdifference squared of (Sum
)sY' estimated and sY' actualbetween  sdifference squared of Sum(12 −=R (12) 

 

E X A M P L E  

Suppose we have run an advertising experiment across a number of 

regions with the following results: 

 

 

 

Region 

Annual 

Advertising 

(per capita) 

Annual 

Sales Units 

(per capita) 

A $  0   5 

B    2   7 

C    4  13 

D    6  22 

E    8  25 

F   10  27 

G   12  31 

H   14  33 

 

Let us take the ADBUDG function (Eq. 2.11). If we try to estimate the 

parameters of the ADBUDG function (a, b, c, d) for these data, to maximize 

the R-square criterion, we get 

,99.0Rwith ,4.43ˆ,0.2ˆ,6.4ˆ,7.39ˆ 2 ===== dcba   (13) 

In Exhibit 3 we plot the results.  The plot shows how well the response 

model fits these data.  
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EXHIBIT 3 

Calibration example using ADBUDG function, with R2=0.99.  

In many cases managers do not have historical data that are relevant for 

calibrating the model for one of several reasons. If the firm always spends about 

the same amount for advertising (say 4 percent of sales in all market areas), then 

it has no objective information about what would happen if it changed the 

advertising-to-sales ratio to 8 percent. Alternatively, the firm may have some 

historical data, but that data may not be relevant because of changes in the 

marketplace such as new competitive entries, changes in brand-price structures, 

changes in customer preferences, and the like. (Consider the problem of using 

year-old data in the personal computer market to predict future market 

behavior.) 

To formally incorporate managerial judgment in a response function format, 

Little (1970) developed a procedure called “decision calculus.” In essence, decision 

calculus asks the manager to run a mental version of the previous market 

experiment. 
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 Q1: What is our current level of advertising and sales?  

Ans.: Advertising=$8/capita; sales=25 units/capita. 

 Q2: What would sales be if we spent $0 in advertising? (A=$0/capita) 

 Q3: What would sales be if we cut 50 percent from our current advertising 

budget?  

(A=$4/capita) 

 Q4: What would sales be if we increased our advertising budget by 50 

percent? (A=$12/capita) 

 Q5: What would sales be if advertising were made arbitrarily large?  

(A=$•/capita) 

Suppose that the manager answered Questions 2 through 5 by 5, 13, 31, and 

40, respectively; we would get essentially the same sales response function as in 

the previous example. 

Multiple Marketing-Mix Elements: Interactions 

In the previous section we dealt with market response models of one variable. 

When we consider multiple marketing-mix variables, we should account for their 

interactions. As Saunders (1987) points out, interactions are usually treated in one 

of three ways: (1) by assuming they do not exist, (2) by assuming that they are 

multiplicative, or (3) by assuming they are multiplicative and additive. For 

example, if we have two marketing-mix variables X1 and X2 with individual 

response functions f(X1) and g(X2), then assumption (1) gives us 

);()( 21 XbgXafY +=        (14) 

assumption (2) gives us 

);()( 21 XgXafY =        (15) 

and assumption (3) gives us 

),()()()( 2121 XgXcfXbgXafY ++=      (16) 

In practice when multiple marketing-mix elements are involved, we can 

resort to one of two forms: the (full) linear interactive form or the multiplicative 

form. The full linear interactive model (for two variables) takes the following 

form: 



 12

,2121 XdXcXbXaY +++=       (17) 

Note here that ∂Y/∂X1=b+dX2, so that sales response to changes in marketing-

mix element X1 is affected by the level of the second variable, X2. 

The multiplicative form is as follows: 

,21
cb XaXY =         (18) 

Here ∂Y/∂X1=abX1
b- 1  X2

c , so that the change in the response at any point is a 

function of the levels of both independent variables. Note here that b and c are 

the constant elasticities of the first and second marketing-mix variables, 

respectively, at all effort levels X1 and X2. 

Dynamic Effects 

Response to marketing actions does not often take place instantly. Carryover 

effects is the general term used to describe the influence of a current marketing 

expenditure on sales in future periods (Exhibit 4). We can distinguish several 

types of carryover effects. One type, the delayed-response effect, arises from 

delays between when marketing dollars are spent and their impact. Delayed 

response is especially evident in industrial markets, where the delay, especially 

for capital equipment, can be a year or more. Another type of effect, the 

customer-holdover effect, arises when new customers created by the marketing 

expenditures remain customers for many subsequent periods. Their later 

purchases should be credited to some extent to the earlier marketing 

expenditures. Some percentage of such new customers will be retained in each 

subsequent period; this phenomenon gives rise to the notion of the customer 

retention rate and its converse, the customer decay rate (also called the attrition 

or erosion rate). 
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EXHIBIT 4 

Some types of dynamic marketing responses. Source: Saunders 1987, p. 33.  

A third form of delayed response is hysteresis, the asymmetry in sales 

buildup compared with sales decline. For example, sales may rise quickly when 

an advertising program begins and then remain the same or decline slowly after 

the program ends. 

New trier effects, in which sales reach a peak before settling down to steady 

state, are common for frequently purchased products, for which many customers 

try a new brand but only a few become regular users. 

Stocking effects occur when a sales promotion not only attracts new 

customers but encourages existing customers to stock up or buy ahead. The 

stocking effect often leads to a sales trough in the period following the promotion 

(4). 

The most common dynamic or carryover effect model used in marketing is 
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,110 −++= ttt YXaaY λ       (19) 

Eq. (19) says that sales at time t (Yt) are made up of a constant minimum base 

(a0), an effect of current activity a1Xt, and a proportion of last period’s sales (l) 

that carries over to this period. Note that Yt is influenced to some extent by all 

previous effort levels Xt-1, Xt-2, ..., X0, because Yt-1 depends on Xt-1 and Yt-2, and in 

turn Yt-2 depends on Xt-2 and Ytt-3, and so on. The simple form of Eq. (19) makes 

calibration easy—managers can either guess l directly as the proportion of sales 

that carries over from one period to the next or estimate it by using linear 

regression. 

Market-Share Models and Competitive Effects 

Thus far we have ignored the effect of competition in our models, 

assuming that product sales result directly from marketing activities. Yet, if 

the set of product choices characterizing a market are well defined, we can 

specify three types of models that might be appropriate: 

• Brand sales models (Y) 

• Product class sales models (V) 

• Market-share models (M) 

Note that by definition 

,VMY ×=         (20) 

Models of product class sales (V) have generally used many of the analytic 

forms we have introduced earlier, explaining demand through environmental 

variables (population sizes, growth, past sales levels, etc.) and by aggregate 

values of marketing variables (total advertising spending, average price, etc.). 

Market-share models have a different structure. To be logically consistent, 

regardless of what any competitor does in the marketplace, each firm’s market 

share must be between 0 and 100 percent (range restriction) and market shares, 

summed over brands, must equal 100 percent (sum restriction). A class of 

models that satisfy both the range and the sum restrictions are attraction models, 

where the attraction of a brand depends on its marketing mix. Essentially these 

models say our share=us/(us+them), where “us” refers to the attractiveness of our 

brand and (us+them) refers to the attractiveness of all brands in the market, 
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including our brand. 

Thus the general attraction model can be written as 

,
...21 n

i
i AAA

AM
+++

=       (21) 

where 

Ai = attractiveness of brand i, and with at least one              and 

Mi = firm i’s market share. 

Attraction models suggest that the market share of a brand is equal to the brand’s 

share of the total marketing effort (attractiveness). 

While many model forms of A’s are used in practice, two of the most common 

are the linear interactive form and the multiplicative form outlined in the section 

on interactions of marketing-mix elements. Both of these models suffer from 

what is called the “proportional draw” property. We can see this best via an 

example: 

E X A M P L E  

Suppose A1=10, A2=5, and A3=5. 

In a market with A1 and A2 only, 

%,33
510

5m a%66
510

10
3

1
23

2
1 =

+
==

+
= ndm  

Suppose A3 enters. Then after entry, 

%,25%,25%,50
5510

10
321 ===

++
= mandmm  

Note that brand 3 draws its 25 percent market share from the other two 

brands, 162/3 percent from brand 1 and 81/3 percent from brand 2—that is, 

proportional to those brands’ market shares. But suppose that brand 3 is 

a product aimed at attacking brand 1; one would expect it to compete 

more than proportionally with brand 1 and less than proportionally with 
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brand 2. 

Thus when using simple market-share models, ensure that all the brands you 

are considering are competing for essentially the same market. Otherwise you 

will need to use extensions of these basic models that admit different levels of 

competition between brands (Cooper 1993). 

We did not include here a description of individual-level response models.  

This is an important type of response model that is gaining wide use within 

marketing, especially in direct marketing and CRM applications.  In a separate 

technical note titled Choice Modeling, we provide a detailed description of a 

widely used individual-level response model called Multinomial Logit.   

Summary 

We summarize several commonly used aggregate market response models, 

and describe their properties. We show how complexity increases even for 

modeling aggregate market response  when we introduce realistic aspects of 

marketing phenomena, such as interactions among marketing variables, dynamic 

response over time, or,  competitive effects.  We also briefly describe how 

aggregate marketing response functions could be estimated either via judgmental 

calibration or statistical estimation.   
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